Method for estimating core losses in switched reluctance motors
نویسندگان
چکیده
The prediction of switched reluctance motor (SRM) performance requires knowledge of core losses. However, the calculation of iron losses in SRM is especially complex first because the flux waveforms are nonsinusoidal and different parts of the magnetic circuit have different waveforms and second because they are conditioned by the type of control used. This study proposes an analytical method for calculating core losses that comprises simulation of the SRM using finite element analysis to determine the magnetization curves, and SRM modeling, which enables transient simulations with the associated electronic power converter run under different control strategies. The flux density waveforms in the different parts of the SRM are derived from the flux density waveform of the stator pole that is obtained from the transient simulation. The specific core losses (in W/kg) are separated into three parts (hysteresis losses, classical eddy current losses and excess losses) and calculated using the waveforms and time derivatives of the local flux density. The core losses for each part of the SRM’s magnetic circuit can be estimated using the calculated values for specific hysteresis losses, specific classical eddy current losses and specific excess losses for each zone. Adding these individual losses yields the total core losses. The method was applied to three-phase 6/4 SRM, and the calculated results were compared with experimentally obtained measurements. Copyright # 2010 John Wiley & Sons, Ltd.
منابع مشابه
Diagnosis of Different Types of Air-Gap Eccentricity Fault in Switched Reluctance Motors Using Transient Finite Element Method
This paper presents a method for diagnosis of eccentricity fault in a switched-reluctance motor (SRM) during offline and standstill modes. In this method, the fault signature is differential induced voltage (DIV) achieved by injecting diagnostic pulses to the motor windings. It will be demonstrated by means of results that there is a correlation between differential induced voltage and eccentri...
متن کاملA Multi-Physics Simulation Model Based on Finite Element Method for the Multi-Layer Switched Reluctance Motor
Using ANSYS finite element (FE) package, a multi-physics simulation model based on finite element method (FEM) is introduced for the multi-layer switched reluctance motor (SRM) in the present paper. The simulation model is created totally in ANSYS parametric design language (APDL) as a parametric model usable for various conventional types of this motor and it is included electromagnetic, therm...
متن کاملA Design Package for Single Tooth per Stator Pole Switched Reluctance Motors
A design package is developed for a single-tooth per stator pole switched reluctance motor, 6/4. The rather simple assumed flux path method is used to estimate the unaligned permeance including the leakage permeances and the effects of shallow slot and tooth taper. The possibility of making rotor tooth width greater than stator tooth width is examined using the developed package. The result app...
متن کاملA New Doubly Segmented Structure for Switched Reluctance Motors with High Torque Capability
In this paper, a new magnetic structure for switched reluctance motors is presented. In this structure, both stator and rotor has a segmented topology and there is no magnetic flux path between two stator/rotor segments or any possible combination of them. The proposed segmental structure may be considered with different number of phases as well as different number of segments per phase for any...
متن کاملa New Resonant Converter Circuit for Reluctance
The purpose of this paper is to introduce a different type of converter circuit used to drive switched reluctance motors. It continues with detailed discussion on the resonant converter armed at minimizing or eliminating the transistors switching losses. Finally the drive has been tested on a disc-type reluctance motor for the perfomance and functionality.
متن کامل